
M U O N g − 2

O F F L I N E C O M P U T I N G
A N D S O F T WA R E
M A N U A L
[G M 2 V 6 _ 0 1 _ 0 0]

May 5, 2015 Git version: v6_01_00_00-0-g30fa9a9 GM2-doc-1825

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825

Contents

1 What is this document? 7

1.1 What code goes with this document? 7

1.2 Obtaining this documentation 8

1.3 Obtaining the source for this documentation, contributing to it, and building it 8

2 Releases of gm2 11

2.1 gm2 v6_01_00 -q prof and (-q debug) 11

2.2 gm2 v6_00_00 -q prof and (-q debug) 11

2.3 gm2 v5_01_00 -q e6:prof 13

2.4 gm2 v5_00_00 -q e6:prof and (-q e6:debug) 13

2.5 gm2 v201402 -q e4:prof 14

2.6 The Release Philosophy 14

3 Getting started with gm2artexamples 17

3.1 Logging in and selecting a release area 17

3.2 Starting a development area 18

3.3 Checkout code 20

4

3.4 Building code 21

3.5 Testing 25

3.6 Running 25

3.7 Logging in again 26

3.8 Summary 26

4 Developer Workflow 29

4.1 Building your code 29

4.2 Incremental rebuilds 30

5 Using a Mac for Development 33

6 Getting Started with the Simulation 35

6.1 Geant4 35

7 Running the simulation 41

7.1 Component packages in the simulation 41

7.2 Using a base release 41

7.3 Using a point release 41

7.4 FCL files for the simulation 42

8 Writing Source Code 43

8.1 Top level CMakeLists.txt file 43

8.2 Organizing Source Code 45

5

8.3 Writing Modules 45

8.4 Writing Services 46

8.5 Writing Input Source Modules 46

8.6 Directory level CMakeLists.txt file 46

8.7 Libraries produced from building 48

8.8 Using External Code (Linking) 48

9 Things You May Do in Your Code 55

9.1 Dealing with parameters 55

9.2 Readling enviornment variables 55

9.3 Throwing an exception 55

9.4 Finding a file 56

10 Frequently Asked Questions 57

Index 61

1
What is this document?

This document is meant to be a user’s manual to the Muon g-2 offline
and simulation software and computing system.1 This document 1 This document replaces the docu-

mentation we had in the Redmine
Wiki because the Wiki was hard to
edit and keep up-to-date, hard to sync
with versions, hard to search, and
required a network connection.

is a PDF file, so it is trivial to search and you can copy it to your
computer/tablet/phone/watch and read it anywhere including your
office, in meetings, on the plane, in the tub, etc. It is also generated
by a git repository using the same build system infrastructure as our
code base, so it is easy to version itself and keep in sync with code
versions. We support writing sections directly in LaTeX (which you
probably already know) and in Markdown (like LaTeX, but simpler).
Finally, there’s a special script that can run shell commands and put
the output directly in the document (no cutting and pasting).

The idea is to have documentation that is easy to read, easy to
write, and easy to keep up to date. All links in the document are
click-able in your PDF reader.

One nice thing about having Wiki pages was that each page can
be short and so the documentation looks manageable, until you try to
find something. The problem with one big PDF file is that it will be
big and will look overwhelming. Remember to read the section titles
carefully and just read what you need. Furthermore, all of the links
to sections (e.g. in the table of contents) are live and will allow you to
navigate the file easily. Nearly every PDF reader has a back button
to take you back to previously read pages (back-traversing links if
necessary); it will probably come in handy.

1.1 What code goes with this document?

The title of this document states the corresponding version of gm2.
gm2 is the “umbrella” product that specifies a release. For example,
this version of the document goes with gm2 v6_01_00. On the bottom
of the title page is the git version information for this document itself.
For this version, it reads v6_01_00_00-0-g30fa9a9. There are three

8 offline computing and software manual [gm2 v6_01_00]

or four parts to this description, separated by dashes (not underscores;
the underscores are part of the version). The first part corresponds
to the gm2 version, with an additional two digits at the end since the
documentation may be updated more often than the g-2 code. This
version should be the git tag of this document. The second part is
the number of commits past the tag. If it is non-zero, then there are
untagged changes. The third part is g followed by the git hash of the
commit corresponding to this document (e.g. 0be91c0). All of this
could be followed by -dirty, which means that this document comes
from source files with uncommitted changes.2 2 Official documentation has zero for

the second part (number of untagged
commits) and no -dirty.

1.2 Obtaining this documentation

The latest official version of this documentation is in GM2 DocDB as
GM2-DOC-1825.3 Newer releases of gm2 (staring from gm2 v5_01_00) 3 DocDB uses its own versioning

scheme (just a sequential number)
which does not correspond to the gm2
release.

will have a copy of this manual that corresponds to the particular gm2
version at $GM2SWDOCS_DIR/manual.pdf.

1.3 Obtaining the source for this documentation, contribut-
ing to it, and building it

To get the source,4 follow the instructions in section 3. When you 4 Note: The program pandoc at
http://johnmacfarlane.net/pandoc is
used to convert markdown and other
file formats to LaTeX. It is part of our
g-2 release for SLF6 machines. See
below for installing it on your own
machine.

get to section 3.3, instead of checking out gm2artexamples, checkout
gm2swdocs. You will be in the develop branch. If you want to check-
out a particular tag, branch, or hash, you can do that with the git
checkout command. For example,

git tag # Show all of the tags
git checkout v5_00_00_02 # Check out sources for this tag

You can also do git checkout on a git commit hash value to
checkout the sources for that particular commit.

1.3.1 Changing and adding to documentation

If you want to change or add documentation, you should start a
feature branch with git flow feature start <your_branch_name>.
You can then alter or add your own documentation. When
you are ready to complete your feature branch, send mail to
gm2-sim@fnal.gov and let people look at your changes first.

There are several directories in gm2swdocs. You should not need to
alter anything in the Modules nor ups directories. The former contains
cmake macros needed for building the source files into PDF. The
latter is for the build and release system. The other directories, latex,
markdown, bashmd is where you’ll put your documentation or make
changes.

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825
http://johnmacfarlane.net/pandoc

what is this document? 9

The latex directory has files in LaTeX as well as some LaTeX
infrastructure files. The most important file in there is manual.tex,
which is the main driver file for this document.5 All other parts come 5 We are using a document class based

on “Tufte” documents, where notes
and captions go into the wide right
margin. Please see the existing LaTeX
files for examples.

in with an \include{filename.tex} command, but this is handled
automatically by a cmake variable (you won’t see the \include lines
in the file). If you add your own LaTeX file in the latex directory,
follow instructions in srcs/gm2swdocs/CMakeLists.txt.

The markdown directory has files written in the Markdown for-
mat and converted by Pandoc. A Google search on Markdown will
give you lots of information. The Pandoc variant of Markdown is
described in http://johnmacfarlane.net/pandoc/demo/example9/
pandocs-markdown.html. See existing files in this directory for exam-
ples. If you want to write something quickly and do not need fancy La-
TeX, then Markdown is the way to go. If you add a file to this direc-
tory, you must follow the instructions in markdown\CMakeLists.txt.

The bashmd directory has files written in Markdown but
also actually runs bash code with the output going into
the document. The best file to look at for an example is
bashmd/gettingStarted_gm2artexamples.bashmd. Again, if
you add a file to this directory, see bashmd/CMakeLists.txt for
instructions.

Pandoc understands many Wiki mark-up formats. If you have a
favorite one, it is possible to add it to this document and have pandoc
process it. Ask for help. If you are not passionate about mark-up
formats, then please just use Markdown as it works very well.

1.3.2 Building the documentation

If you are on Mac, a Windows machine, or your own Linux machine,
you must have installed a full TeX suite and pandoc on your system.
See http://johnmacfarlane.net/pandoc/installing.html for installation
instructions for pandoc. If you are on gm2gpvm, everything is installed
there for you, but you must issue setup pandoc; see below.

Assuming your environment is set up (see above) then you need
to do, once per session, . mrb s . If you are on gm2gpvm, do setup
pandoc (it only works on SLF6, so use machines gm2gpvm02-04). Then
you can do mrb b to build. Note that by default, files in bashmd/
will not be built as they can take a long time. If you do want them
built, then do mrb b -DBUILD_BASHMD=1. Also, pdflatex will run
many times to ensure that references and table of contents are all
resolved. If you make changes, only those changed files will be rebuilt
on subsequent builds. If you see an error like Cannot find PANDOC
and you are own gm2gpvm, then you forgot to issue the setup pandoc
command.

http://johnmacfarlane.net/pandoc/demo/example9/pandocs-markdown.html
http://johnmacfarlane.net/pandoc/demo/example9/pandocs-markdown.html
http://johnmacfarlane.net/pandoc/installing.html

10 offline computing and software manual [gm2 v6_01_00]

The output PDF file will be in $MRB_BUILDDIR/gm2swdocs/latex/manual.pdf.
On a Mac, you can view it with,

open $MRB_BUILDDIR/gm2swdocs/latex/manual.pdf

When you have completed your feature branch, send mail to
gm2-sim@fnal.gov and await further instructions.

2
Releases of gm2

This section describes the various releases of gm2. At the end of this
section is a description of the release philosophy. Some releases will
have a debug build. You should only use those builds for debugging.
Use the prof build for analyses.

The constituent versions of main packages are given for each gm2
release. You can see a list of all dependencies by running ups depend.
For example,

ups depend gm2 v6_01_00 -q prof

For g− 2 products, you can usually see a change log in the product
directory. For example,

less $GM2RINGSIM_DIR/CHANGELOG

Special migration instructions are given where necessary. Migration
in general is covered in the developer workflow section.

2.1 gm2 v6_01_00 -q prof and (-q debug)

This is the first point release of the v6 series.
Contains:

• gm2ringsim v3_00_00
• gm2geom v3_00_00
• gm2dataproducts v3_00_00
• artg4 v3_00_00
• gm2artexamples v3_00_00

2.2 gm2 v6_00_00 -q prof and (-q debug)

This a base release of the v6 series. Note that you no longer have to
specify the qualifier for the compiler version (is e7 for this release)1 1 There is only one compiler version

that works for this release.

12 offline computing and software manual [gm2 v6_01_00]

As per the release philosophy, there are no g-2 packages in this release,
only externals are released.

gm2 v6_00_00 has the following:

• art v1_13_01 Release Notes
• root v5_34_25 Release Notes
• geant v4_9_6_p04a 4.9.6, p01, p02, p03, p04
• gcc v4_9_2 with -std=c++1y for C++14 features.
• gsl v1_16 (GNU scientific library) (new!)

This release works on the following platforms:

• Scientific Linux 5
• Scientific Linux 6
• Mac OSX Mavericks
• Mac OSX Yosemite (new!)

Note that Mac OSX Mountain Lion is no longer supported.
There are significant improvements that speed up builds, including

a replacement for make called ninja. See section 4.1.

2.2.1 How to migrate from v5_XX_XX to v6_00_00

Updating source code: The develop branches of the standard
simulation packages are now compatible with v6_00_00. If you have
a branch that you need to update, you can merge develop on to your
branch with,

git merge develop

Be sure to read the next section for important changes.

Building with v6_00_00: In general, it is easiest to start with a
new development area. You can re-use an old one by setting up the
g− 2 environment, explicitly setting up this version of gm2 and then, in
the top level directory of your development area, do

mrb newDev -p

That command will make a new localProducts... area. You
must source the setup script in there to continue.

Missing symbols involving TFileService: The TFileService
has changed and now involves a template, which means one must
explicitly link in its library.

If you have a module that uses a TFileService, find
the CMakeLists.txt file and add to the art_make after

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Release_Notes_11301
https://root.cern.ch/root/html534/notes/release-notes.html
http://geant4.web.cern.ch/geant4/support/ReleaseNotes4.9.6.html
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-1.txt
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-2.txt
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-3.txt
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-4.txt

releases of gm2 13

MODULE_LIBRARIES, art_Framework_Services_Optional_TFileService_service.
For example,

Fill Builder Filter Module
art_make(MODULE_LIBRARIES

gm2analyses_calo_clustering
art_Framework_Services_Optional_TFileService_service

)

Install header files into the products area
install_headers()

Don't do clustering until we get Nic's CaloGeometry_service up and running again
add_subdirectory(clustering)

I have made this change for most of our packages in the
feature/gm2v6 branch (now in develop).

Problems with Root on Mac Yosemite: The version of root
setup by gm2 v6_00_00 (or any v6 series release) gives an error when
you try to open a TBrowser (this only happens on the Mac Yosemite
platform). An updated root for yosemite is available. When you are
ready to analyze data with root, do the following beforehand:

setup root v5_34_25a -q e7:prof

This will give you a version of root that works on Yosemite.

2.3 gm2 v5_01_00 -q e6:prof

This is the first point release of the v5 series.
Contains:

• gm2ringsim v2_00_00
• gm2geom v2_00_00
• gm2dataproducts v2_00_00
• artg4 v2_00_00
• gm2artexamples v2_00_00

2.4 gm2 v5_00_00 -q e6:prof and (-q e6:debug)

Note the new version numbering scheme as per the release philosophy.
This release is the fifth one for g-2 since time began, thus the v5.

This release is the base release of the v5 series.
gm2 v5_00_00 has the following:

14 offline computing and software manual [gm2 v6_01_00]

• art v1_12_02 Release Notes
• root v5_34_21b Release Notes
• geant4 v4_9_6_p03e Release Notes: 4.9.6, p01, p02, p03
• gcc v4_9_1 with -std=c++1y for C++14 features.

2.4.1 How to migrate from v201402 to v5_00_00

If you have a branch that works with gm2 v201402, then you will need
to make some changes for it to work in gm2 v5_00_00 as some parts
of the build system have changed. If you are working on code we have
in Redmine, and you can merge the develop branch onto your branch
without breaking your code. Do the following:

Go to your source directory and check out your branch
Check in all code you've been working on and push to Redmine

Now merge develop onto your branch
$ git pull origin develop

If there are merge conflicts, then you will have to resolve
them. Accept changes from develop for CMakeLists.txt files and
product_deps as those will have the necessary changes.

2.5 gm2 v201402 -q e4:prof

gm2 v201402 has the following:

• art v1_08_10 Release Notes
• root v5_34_12
• geant4 v4_9_6_p02
• gcc v4_8_1 with -std=c++11 for C++11 features.
• cmake v2_8_8

and

• gm2ringsim v1_00_00
• gm2geom v1_00_00
• gm2dataproducts v1_00_00
• artg4 v1_00_00

This is the old release with the old date scheme. It should no longer
be used.

2.6 The Release Philosophy

What is a gm2 release? A gm2 release is a versioned collection of li-
braries and executables that you either use or build your code against.

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Release_Notes_11202
https://root.cern.ch/root/html534/notes/release-notes.html
http://geant4.web.cern.ch/geant4/support/ReleaseNotes4.9.6.html
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-1.txt
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-2.txt
http://geant4.web.cern.ch/geant4/support/Patch4.9.6-3.txt
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Release_Notes_10810

releases of gm2 15

A particular gm2 release contains a particular version of gcc, art,
root, geant4, etc. These libraries/executables are called the externals.
A gm2 release may also contain g − 2 applications and libraries built
against those externals (e.g. gm2ringsim, artg4). If the versions of
those packages are suitable for you, then you can use them directly
without having to build them yourself. This means we have official
versions of these packages.

Official releases are important. For the purpose of scientific repro-
ducibility, it is important to know how results were produced. Using
a versioned release means that we know the code used for an analysis
and can re-run it to do further analyses or look for mistakes. Official
releases are essential for sharing code, as is gives people a common
base and starting place.

The philsophy of gm2 releases is that the first (major) version
number in the release (e.g. the 5 in v5_00_00) is the release series.
Releases in the same series are built with the same version of externals
(gcc, art, geant4, root, etc) and so they are all binary compatible.
The vX_00_00 release only has externals in it and is called a base
release. We then add point releases (e.g. v5_01_00, v5_02_03) con-
taining g − 2 libraries and applications (e.g. gm2ringsim). If there is
a new art or root, then the major version number increases (e.g. to
v6_00_00) and a new series is started. New major releases (new series)
should occur only 3-4 times per year.

The point releases can occur more often and represent official
changes to the g − 2 code base (e.g. new geometry or features in the
simulation). Feature changes advance the middle (minor) version
number and bug fixes advance the last (patch) version number. So
the first release of g − 2 code for a new series is vX_01_00. A feature
addition will advance to vX_02_00. A subsequent bug fix will advance
to vX_02_01.

Users adoption of these point releases is optional. They can always
build all of the necessary code based on the vX_00_00 base release.
But using a point release can be convenient and save a large amount
of time by using pre-built libraries instead of building them by hand.
The point releases also represent a trackable official progression of fea-
tures and bug fixes. Users can also use libraries from a point release,
but build parts of the release themselves that they are developing
(e.g. developing gm2ringsim, which is also in the release). In these
cases, the build system will automatically use the user developed code
instead of what is in the release. The superbuild system, which does
builds across platforms for use on the grid, will automatically mark
such user-built libraries as unofficial.

16 offline computing and software manual [gm2 v6_01_00]

2.6.1 How do releases help me as a user/developer?

If the official released code is suitable for you (e.g. you are not develop-
ing the code in the release, but are instead developing code that uses
the release), then using an official release will save you compilation
time and will be more convenient. You can more easily track what you
have run on the grid. You may be able to run without having to build
anything (e.g. simply running the official gm2ringsim.

You should use an official point release whenever possible. Instruc-
tions for setting up your development area and how to migrate to new
releases are given in the section under the release notes as well as in
the developer workflow section of this manual.

3
Getting started with gm2artexamples

This section is a short tutorial to show you quickly how to get started
by,

• Logging in and selecting a release (the latest)
• Starting a development area
• Checking out code (gm2artexamples)
• Building it
• Testing
• Running
• Logging in again

For this tutorial, we’ll use the gm2artexamples product.1 This is a 1 We use the terms product,
project, and package somewhat
interchangeably. All of our prod-
ucts live on the Redmine server,
http://redmine.fnal.gov

good product to use if you are getting started.

3.1 Logging in and selecting a release area

Fermilab has several interactive virtual machines for use by the Muon
g− 2 collaboration. See here for more information about how to log in.
Our releases (libraries, executables) are served by CVMFS.2 CVMFS 2 CVMFS is a system that serves

application code and updates auto-
matically when new files are released.

is already mounted on the Fermilab interactive VMs. If you have a
Mac, you can install CVMFS yourself by looking here, and then use
your Mac to develop code.

Once you’ve logged into the machine, you need to select a release
area. You always3 need to do this step everytime you log in. If you 3 You need to do this step everytime

you log in because you can use
different release areas for the same
development area, say, for example, if
CVMFS is down or you are sharing
a directory between your Mac and a
Linux system.

are on a Fermilab interactive VM (gm2gpvm01, gm2gpvm02, gm2gpvm03,
gm2gpvm04), you select the release area by doing,

$ source /grid/fermiapp/gm2/setup # On gm2gpvm machine

Note that $ is the shell prompt (don’t type it in).
If you are on a Mac or another system with CVMFS OASIS in-

stalled, you do,

$ source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup

https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/GPCF
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/InstallingOasisOnMacLaptop

18 offline computing and software manual [gm2 v6_01_00]

Now we’ll actually run it so you can see the output. This script
will work on both Mac and gm2gpvm. You may want to put it in your
.profile on gm2gpvm.

$ if [-r /grid/fermiapp/gm2/setup]; then # Does /grid/fermiapp/gm2/setup exist?
$ source /grid/fermiapp/gm2/setup # We're on gm2gpvm
$ else
$ source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # We're on a Mac
$ fi

g-2 software

--> To list gm2 releases, type
ups list -aK+ gm2

--> To use the latest release, do
setup gm2 v6_00_00 -q prof

For more information, see https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/ReleaseInformation

You may want to put that source command in your ~/.profile
file. Furthermore, if you are on a gm2gpvm machine, you should also
put setup git at the bottom of your ~/.profile.

3.2 Starting a development area

Now that the release area is selected, you need to make a development
area. The development area contains source code, build products,
and a personal release area. You typically use a development area
for a particular topic, such as adding a feature to the simulation or
generating a plot for some study. You can have as many development
areas as you want, but only one can be active at a time.

Make an empty directory and go there. If you are on a gm2gpvm
machine, you should make an area in /gm2/app/users/<YOUR_NAME>.4 4 If this directory does not exist, you

can make it with the mkdir command.You can put code in your home directory, but that has a small quota
and you can easily use it all up. There is no quota on /gm2/app, but it
is not backed up.

$ mkdir /gm2/app/users/lyon/first-try # On gm2gpvm
$ cd /gm2/app/users/lyon/first-try

If you are on your Mac, or some other machine, make the directory
where you have room. Here’s a script that will run on both Mac and
gm2gpvm.

$ if [-r /gm2/app/users/$USER]; then # Does /gm2/app/users/YOU exist?
$ # It does, let's use /gm2/app/users/$USER/first-try followed by random letters for uniqueness
$ TMPDIR=`mktemp -d /gm2/app/users/$USER/first-try.XXXX`
$ else
$ # We're not on gm2gpvm, let's just make a directory in your home area (hope there's room!)

getting started with gm2artexamples 19

$ TMPDIR=`mktemp -d ~/first-try.XXXX`
$ fi
$
$ # Change directory there
$ cd $TMPDIR

Note that all subsequent commands are the same for gm2gpvm and
Mac or whatever.

Since you are starting out with a new area, you must choose a
release. You should generally choose the latest, which will be specified
in the output when you selected the release area. Just do what the
command says,5 5 setup is a ups command. UPS is

our release and product management
system.$ setup gm2 v6_01_00 -q prof

So here we are setting up g-2 release v6_01_00 with the prof qual-
ifier. prof means we’ll do a profile build. Profile builds are optimized
and have debugging symbols turned on.

Now, you must create the development area. You will start using
the mrb commands. mrb means “multi-repository build system” and
is a build system used by Muon g − 2, the art developers, and LBNF.
You can get a list of mrb commands with (you don’t have to type in
the full path that you see below),

$ mrb -h
Usage /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/mrb/v1_03_00a_gm2/bin/mrb [-h for help]"

Tools (for help on tool, do "/cvmfs/oasis.opensciencegrid.org/gm2/prod/external/mrb/v1_03_00a_gm2/bin/mrb <tool> -h")

newDev (n) Start a new development area
gitCheckout (g) Clone a git repository
svnCheckout (svn) Checkout from a svn repository
setEnv (s) Setup development environment (mrbSetEnv)
build (b) Run buildtool
install (i) Run buildtool with install
test (t) Run buildtool with tests

superbuild (sb) Run superbuild on the Jenkins buildmaster
setup_local_products (slp) Setup local products (mrbslp) [not local sources]
zapBuild (z) Delete everything in your build area
newProduct (p) Create a new product from scratch
changelog (c) Display a changelog for a package
bumpVersion (bv) Bump version number of a package
updateDeps (ud) Update dependencies in CMakeLists.txt and product_deps
updateCM (uc) Update the master CMakeLists.txt file

updateLocalProdDeps (ulpd) Update dependencies in product_deps to reflect local products
makeDeps (md) Build or update a header level dependency list
checkDeps (cd) Check for missing build packages
pullDeps (pd) Pull missing build packages into MRB_SOURCE

Aliases (we use aliases for these commands because they must be sourced)

mrbsetenv Setup a development enviornment and local products [use this more often]
(source $MRB_DIR/bin/mrbSetEnv)

mrbslp Setup only the products installed in the working localProducts_XXX directory
(source $MRB_DIR/bin/setup_local_products)

The mrb commands are the same if you are on gm2gpvm or your
Mac.

To initialize your development area, do this in an empty directory.

20 offline computing and software manual [gm2 v6_01_00]

$ mrb newDev

building development area for gm2 v6_01_00 -q prof

MRB_BUILDDIR is /Users/lyon/first-try.Wrih/build_d14.x86_64
MRB_SOURCE is /Users/lyon/first-try.Wrih/srcs
INFO: cannot find releaseDB/base_dependency_database

mrb checkDeps and pullDeps may not have complete information
MRB_PROEJCT IS gm2

IMPORTANT: You must type
source "/Users/lyon/first-try.Wrih/localProducts_gm2_v6_01_00_prof/setup"

NOW and whenever you log in

Read the output carefully. Some things to note:

• A build directory is created and note its name contains the flavor
of your machine.6 You can get to that directory easily with cd 6 Mac is d13 (for Darwin version

13) and slf5, slf6 are marked as
appropriate.

$MRB_BUILDDIR .

• A source directory is created for your source code. You can get to
it easily by doing cd $MRB_SOURCE .

• You can ignore the message about the release database. That’s a
LBNF thing we don’t use.

• The important message is indeed important. There is a set up
script that you need to run that sets up your environment. Run
that script now and whenever you log in to restore your develop-
ment environment. You don’t need to type in the whole path, since
you are at the top of your development area.

$ source localProducts_gm2_v6_01_00_prof/setup
MRB_PROJECT=gm2
MRB_PROJECT_VERSION=v6_01_00
MRB_QUALS=prof
MRB_TOP=/Users/lyon/first-try.Wrih
MRB_SOURCE=/Users/lyon/first-try.Wrih/srcs
MRB_BUILDDIR=/Users/lyon/first-try.Wrih/build_d14.x86_64
MRB_INSTALL=/Users/lyon/first-try.Wrih/localProducts_gm2_v6_01_00_prof

PRODUCTS=/Users/lyon/first-try.Wrih/localProducts_gm2_v6_01_00_prof:/cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2:/Users/lyon/Development/g-2/docs/localProducts_gm2_v6_01_00_prof:/cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2:/cvmfs/oasis.opensciencegrid.org/gm2/prod/external

• A local products area is also created. This is your own personal
release area that overlays the official one (so stuff you have in your
personal release area override products in the official one).

3.3 Checkout code

Now you need to checkout some code. For this example, we’ll use the
gm2artexamples product. All of our code lives in git repositories on
http://redmine.fnal.gov . The mrb gitcheckout command is used to
clone the git repositories (this is a convenience command so you don’t
have to remember the git URLs and other set up tasks).7 Let’s check 7 You can type mrb g for short.
out the gm2artexamples product. You must be in the srcs directory
of your development area. The command is rather chatty.

getting started with gm2artexamples 21

$ cd srcs
$ mrb g gm2artexamples
$ cd gm2artexamples
$ cd ..

git clone: clone gm2artexamples at /Users/lyon/first-try.Wrih/srcs
NOTICE: Running git clone ssh://p-gm2artexamples@cdcvs.fnal.gov/cvs/projects/gm2artexamples
Cloning into 'gm2artexamples'...
X11 forwarding request failed on channel 0
ready to run git flow init for gm2artexamples
Already on 'master'
Your branch is up-to-date with 'origin/master'.
Using default branch names.
Already on 'develop'
Your branch is up-to-date with 'origin/develop'.
Branch develop set up to track remote branch develop from origin.
X11 forwarding request failed on channel 0
Already up-to-date.
NOTICE: Adding gm2artexamples to CMakeLists.txt file
NOTICE: You can now 'cd gm2artexamples'

You are now on the develop branch (check with 'git branch')
To make a new feature, do 'git flow feature start <featureName>'

If you have more code to checkout, then run more mrb g com-
mands.

3.4 Building code

Now that your code is checked out, you need to build it. The first step
you need to do is to “extend” your environment with any products
your build depends upon set up. The way to do this is to do source
mrb setEnv.8 You need source (or . for short) because your shell 8 There are two shortcuts for source

mrb setenv; you can do . mrb s
or mrbsetenv (the latter is a bash
function that does the source for
you).

environment needs to be extended with new environment variables.
You need to run this command after you log back into and start
developing. If you do not make major changes to your code (you don’t
introduce new dependencies), then you only need to run the command
once before you build.

$. mrb s

local product directory is /Users/lyon/first-try.Wrih/localProducts_gm2_v6_01_00_prof
----------- this block should be empty ------------------

The working build directory is /Users/lyon/first-try.Wrih/build_d14.x86_64
The source code directory is /Users/lyon/first-try.Wrih/srcs
----------- check this block for errors -----------------------
--

You should not see any errors between the dashed lines. If you do,
then you have some product dependency mismatch (ask for help).

Now you can build your code. The build command is mrb build.9 9 mrb b for short

$ mrb b

/Users/lyon/first-try.Wrih/build_d14.x86_64
calling buildtool -I /Users/lyon/first-try.Wrih/localProducts_gm2_v6_01_00_prof -b
INFO: Install prefix = /Users/lyon/first-try.Wrih/localProducts_gm2_v6_01_00_prof
INFO: CETPKG_TYPE = Prof

22 offline computing and software manual [gm2 v6_01_00]

INFO: Stage cmake.

-- The C compiler identification is GNU 4.9.2
-- The CXX compiler identification is GNU 4.9.2
-- Checking whether C compiler has -isysroot
-- Checking whether C compiler has -isysroot - yes
-- Checking whether C compiler supports OSX deployment target flag
-- Checking whether C compiler supports OSX deployment target flag - yes
-- Check for working C compiler: /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/gcc/v4_9_2/Darwin64bit+14/bin/gcc
-- Check for working C compiler: /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/gcc/v4_9_2/Darwin64bit+14/bin/gcc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Checking whether CXX compiler has -isysroot
-- Checking whether CXX compiler has -isysroot - yes
-- Checking whether CXX compiler supports OSX deployment target flag
-- Checking whether CXX compiler supports OSX deployment target flag - yes
-- Check for working CXX compiler: /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/gcc/v4_9_2/Darwin64bit+14/bin/g++
-- Check for working CXX compiler: /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/gcc/v4_9_2/Darwin64bit+14/bin/g++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- full qual e7:prof reduced to e7
-- Product is gm2artexamples v3_00_00 e7:prof
-- Module path is /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/art/v1_13_01/Modules;/cvmfs/oasis.opensciencegrid.org/gm2/prod/external/cetbuildtools/v4_08_01/Modules
-- set_install_root: PACKAGE_TOP_DIRECTORY is /Users/lyon/first-try.Wrih/srcs/gm2artexamples
-- cet dot version: 3.00.00
-- Building for Darwin d14 x86_64
-- set_install_root: PACKAGE_TOP_DIRECTORY is /Users/lyon/first-try.Wrih/srcs/gm2artexamples
-- Selected diagnostics option CAUTIOUS
-- cmake build type set to Prof in directory <top> and below
-- DEFINE (-D): ;NDEBUG
-- compiler flags for directory <top> and below
-- C++ FLAGS: -O3 -g -gdwarf-2 -fno-omit-frame-pointer -Werror -pedantic -std=c++1y -Wall -Werror=return-type
-- C FLAGS: -O3 -g -gdwarf-2 -fno-omit-frame-pointer -Werror -pedantic -Wall -Werror=return-type
-- Boost version: 1.57.0
-- Found the following Boost libraries:
-- chrono
-- date_time
-- filesystem
-- graph
-- iostreams
-- locale
-- prg_exec_monitor
-- program_options
-- random
-- regex
-- serialization
-- signals
-- system
-- thread
-- timer
-- unit_test_framework
-- wave
-- wserialization
-- CPACK_PACKAGE_VERSION is 3.00.00
-- CPACK_PACKAGE_NAME and CPACK_SYSTEM_NAME are gm2 d14-x86_64-prof
-- Configuring done
CMake Warning (dev):

Policy CMP0042 is not set: MACOSX_RPATH is enabled by default. Run "cmake
--help-policy CMP0042" for policy details. Use the cmake_policy command to
set the policy and suppress this warning.

MACOSX_RPATH is not specified for the following targets:

gm2artexamples_DataObjects_dict
gm2artexamples_DataObjects_map
gm2artexamples_HitAndTrackObjects_dict
gm2artexamples_HitAndTrackObjects_map
gm2artexamples_Lesson1_HelloWorld1_module
gm2artexamples_Lesson1_HelloWorld2_module

getting started with gm2artexamples 23

gm2artexamples_Lesson1_MyDatumReader_module
gm2artexamples_Lesson1_ProduceMyLittleDatum_module
gm2artexamples_Lesson2_makeHits_module
gm2artexamples_Lesson2_makeRotatedHits_module
gm2artexamples_Lesson2_makeSimpleTracksFromNewHits_module
gm2artexamples_Lesson2_makeSimpleTracksFromOldHits_module
gm2artexamples_Lesson2_readHits_module
gm2artexamples_Lesson2_readSimpleTracks_module
test_MyLittleDatumAnalyzer_module
test_MyLittleDatumProducer_module

This warning is for project developers. Use -Wno-dev to suppress it.

-- Generating done
-- Build files have been written to: /Users/lyon/first-try.Wrih/build_d14.x86_64

INFO: Stage cmake successful.

INFO: gm2artexamples version 3.00.00 configured.

INFO: Stage build.

Scanning dependencies of target gm2artexamples_DataObjects
[3%] Building CXX object gm2artexamples/DataObjects/CMakeFiles/gm2artexamples_DataObjects.dir/MyLittleDatum.cc.o
Linking CXX shared library ../lib/libgm2artexamples_DataObjects.dylib
[3%] Built target gm2artexamples_DataObjects
[6%] Generating gm2artexamples_DataObjects_dict.cpp, gm2artexamples_DataObjects_map.cpp
--->> genreflex: INFO: Using gccxml from /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/gccxml/v0_9_20140718a/Darwin64bit+14/bin/gccxml
--->> genreflex: INFO: Parsing file /Users/lyon/first-try.Wrih/srcs/gm2artexamples/DataObjects/classes.h with GCC_XML OK
--->> genreflex: INFO: Generating Reflex Dictionary
class artex::MyLittleDatum
class std::vector<artex::MyLittleDatum>
class art::Wrapper<std::vector<artex::MyLittleDatum> >
Scanning dependencies of target gm2artexamples_DataObjects_dict
[9%] Building CXX object gm2artexamples/DataObjects/CMakeFiles/gm2artexamples_DataObjects_dict.dir/gm2artexamples_DataObjects_dict.cpp.o
Linking CXX shared library ../lib/libgm2artexamples_DataObjects_dict.dylib
[9%] Built target gm2artexamples_DataObjects_dict
Scanning dependencies of target gm2artexamples_DataObjects_map
[12%] Building CXX object gm2artexamples/DataObjects/CMakeFiles/gm2artexamples_DataObjects_map.dir/gm2artexamples_DataObjects_map.cpp.o
Linking CXX shared library ../lib/libgm2artexamples_DataObjects_map.dylib
[15%] Built target gm2artexamples_DataObjects_map
Scanning dependencies of target gm2artexamples_HitAndTrackObjects
[18%] Building CXX object gm2artexamples/HitAndTrackObjects/CMakeFiles/gm2artexamples_HitAndTrackObjects.dir/Hit.cpp.o
[21%] Building CXX object gm2artexamples/HitAndTrackObjects/CMakeFiles/gm2artexamples_HitAndTrackObjects.dir/HitData.cpp.o
Linking CXX shared library ../lib/libgm2artexamples_HitAndTrackObjects.dylib
[21%] Built target gm2artexamples_HitAndTrackObjects
[25%] Generating gm2artexamples_HitAndTrackObjects_dict.cpp, gm2artexamples_HitAndTrackObjects_map.cpp
--->> genreflex: INFO: Using gccxml from /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/gccxml/v0_9_20140718a/Darwin64bit+14/bin/gccxml
--->> genreflex: INFO: Parsing file /Users/lyon/first-try.Wrih/srcs/gm2artexamples/HitAndTrackObjects/classes.h with GCC_XML OK
--->> genreflex: INFO: Generating Reflex Dictionary
class artex::SimpleTrackData
class std::vector<artex::SimpleTrackData>
class artex::HitData
class std::vector<artex::HitData>
class art::PtrVector<artex::HitData>
class art::Wrapper<std::vector<artex::SimpleTrackData> >
class art::Wrapper<std::vector<artex::HitData> >
class art::Ptr<artex::HitData>
Scanning dependencies of target gm2artexamples_HitAndTrackObjects_dict
[28%] Building CXX object gm2artexamples/HitAndTrackObjects/CMakeFiles/gm2artexamples_HitAndTrackObjects_dict.dir/gm2artexamples_HitAndTrackObjects_dict.cpp.o
Linking CXX shared library ../lib/libgm2artexamples_HitAndTrackObjects_dict.dylib
[28%] Built target gm2artexamples_HitAndTrackObjects_dict
Scanning dependencies of target gm2artexamples_HitAndTrackObjects_map
[31%] Building CXX object gm2artexamples/HitAndTrackObjects/CMakeFiles/gm2artexamples_HitAndTrackObjects_map.dir/gm2artexamples_HitAndTrackObjects_map.cpp.o
Linking CXX shared library ../lib/libgm2artexamples_HitAndTrackObjects_map.dylib
[34%] Built target gm2artexamples_HitAndTrackObjects_map
Scanning dependencies of target gm2artexamples_Lesson1_HelloWorld1_module
[37%] Building CXX object gm2artexamples/Lesson1/CMakeFiles/gm2artexamples_Lesson1_HelloWorld1_module.dir/HelloWorld1_module.cc.o

24 offline computing and software manual [gm2 v6_01_00]

Linking CXX shared library ../lib/libgm2artexamples_Lesson1_HelloWorld1_module.dylib
[37%] Built target gm2artexamples_Lesson1_HelloWorld1_module
Scanning dependencies of target gm2artexamples_Lesson1_HelloWorld2_module
[40%] Building CXX object gm2artexamples/Lesson1/CMakeFiles/gm2artexamples_Lesson1_HelloWorld2_module.dir/HelloWorld2_module.cc.o
Linking CXX shared library ../lib/libgm2artexamples_Lesson1_HelloWorld2_module.dylib
[40%] Built target gm2artexamples_Lesson1_HelloWorld2_module
Scanning dependencies of target gm2artexamples_Lesson1_MyDatumReader_module
[43%] Building CXX object gm2artexamples/Lesson1/CMakeFiles/gm2artexamples_Lesson1_MyDatumReader_module.dir/MyDatumReader_module.cc.o
Linking CXX shared library ../lib/libgm2artexamples_Lesson1_MyDatumReader_module.dylib
[43%] Built target gm2artexamples_Lesson1_MyDatumReader_module
Scanning dependencies of target gm2artexamples_Lesson1_ProduceMyLittleDatum_module
[46%] Building CXX object gm2artexamples/Lesson1/CMakeFiles/gm2artexamples_Lesson1_ProduceMyLittleDatum_module.dir/ProduceMyLittleDatum_module.cc.o
Linking CXX shared library ../lib/libgm2artexamples_Lesson1_ProduceMyLittleDatum_module.dylib
[46%] Built target gm2artexamples_Lesson1_ProduceMyLittleDatum_module
Scanning dependencies of target gm2artexamples_Lesson2_makeHits_module
[50%] Building CXX object gm2artexamples/Lesson2/CMakeFiles/gm2artexamples_Lesson2_makeHits_module.dir/makeHits_module.cc.o
Linking CXX shared library ../lib/libgm2artexamples_Lesson2_makeHits_module.dylib
[50%] Built target gm2artexamples_Lesson2_makeHits_module
Scanning dependencies of target gm2artexamples_Lesson2_makeRotatedHits_module
[53%] Building CXX object gm2artexamples/Lesson2/CMakeFiles/gm2artexamples_Lesson2_makeRotatedHits_module.dir/makeRotatedHits_module.cc.o
Linking CXX shared library ../lib/libgm2artexamples_Lesson2_makeRotatedHits_module.dylib
[53%] Built target gm2artexamples_Lesson2_makeRotatedHits_module
Scanning dependencies of target gm2artexamples_Lesson2_makeSimpleTracksFromNewHits_module
[56%] Building CXX object gm2artexamples/Lesson2/CMakeFiles/gm2artexamples_Lesson2_makeSimpleTracksFromNewHits_module.dir/makeSimpleTracksFromNewHits_module.cc.o
Linking CXX shared library ../lib/libgm2artexamples_Lesson2_makeSimpleTracksFromNewHits_module.dylib
[56%] Built target gm2artexamples_Lesson2_makeSimpleTracksFromNewHits_module
Scanning dependencies of target gm2artexamples_Lesson2_makeSimpleTracksFromOldHits_module
[59%] Building CXX object gm2artexamples/Lesson2/CMakeFiles/gm2artexamples_Lesson2_makeSimpleTracksFromOldHits_module.dir/makeSimpleTracksFromOldHits_module.cc.o
Linking CXX shared library ../lib/libgm2artexamples_Lesson2_makeSimpleTracksFromOldHits_module.dylib
[59%] Built target gm2artexamples_Lesson2_makeSimpleTracksFromOldHits_module
Scanning dependencies of target gm2artexamples_Lesson2_readHits_module
[62%] Building CXX object gm2artexamples/Lesson2/CMakeFiles/gm2artexamples_Lesson2_readHits_module.dir/readHits_module.cc.o
Linking CXX shared library ../lib/libgm2artexamples_Lesson2_readHits_module.dylib
[62%] Built target gm2artexamples_Lesson2_readHits_module
Scanning dependencies of target gm2artexamples_Lesson2_readSimpleTracks_module
[65%] Building CXX object gm2artexamples/Lesson2/CMakeFiles/gm2artexamples_Lesson2_readSimpleTracks_module.dir/readSimpleTracks_module.cc.o
Linking CXX shared library ../lib/libgm2artexamples_Lesson2_readSimpleTracks_module.dylib
[65%] Built target gm2artexamples_Lesson2_readSimpleTracks_module
Scanning dependencies of target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+bin+myLittleDatum_wr.sh
[68%] Copying /Users/lyon/first-try.Wrih/srcs/gm2artexamples/test/myLittleDatum_wr.sh to /Users/lyon/first-try.Wrih/build_d14.x86_64/gm2artexamples/bin/myLittleDatum_wr.sh
[68%] Built target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+bin+myLittleDatum_wr.sh
Scanning dependencies of target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+bin+very_simple_test.sh
[71%] Copying /Users/lyon/first-try.Wrih/srcs/gm2artexamples/test/very_simple_test.sh to /Users/lyon/first-try.Wrih/build_d14.x86_64/gm2artexamples/bin/very_simple_test.sh
[71%] Built target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+bin+very_simple_test.sh
Scanning dependencies of target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+test+MyLittleDatum_test.d+MyLittleDatum_test.fcl
[75%] Copying fcl/MyLittleDatum_test.fcl to /Users/lyon/first-try.Wrih/build_d14.x86_64/gm2artexamples/test/MyLittleDatum_test.d/MyLittleDatum_test.fcl
[75%] Built target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+test+MyLittleDatum_test.d+MyLittleDatum_test.fcl
Scanning dependencies of target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+test+MyLittleDatum_test.d+messageDefaults.fcl
[78%] Copying fcl/messageDefaults.fcl to /Users/lyon/first-try.Wrih/build_d14.x86_64/gm2artexamples/test/MyLittleDatum_test.d/messageDefaults.fcl
[78%] Built target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+test+MyLittleDatum_test.d+messageDefaults.fcl
Scanning dependencies of target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+test+myLittleDatum_wr.sh.d+MyLittleDatum_r.fcl
[81%] Copying fcl/MyLittleDatum_r.fcl to /Users/lyon/first-try.Wrih/build_d14.x86_64/gm2artexamples/test/myLittleDatum_wr.sh.d/MyLittleDatum_r.fcl
[81%] Built target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+test+myLittleDatum_wr.sh.d+MyLittleDatum_r.fcl
Scanning dependencies of target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+test+myLittleDatum_wr.sh.d+MyLittleDatum_w.fcl
[84%] Copying fcl/MyLittleDatum_w.fcl to /Users/lyon/first-try.Wrih/build_d14.x86_64/gm2artexamples/test/myLittleDatum_wr.sh.d/MyLittleDatum_w.fcl
[84%] Built target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+test+myLittleDatum_wr.sh.d+MyLittleDatum_w.fcl
Scanning dependencies of target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+test+myLittleDatum_wr.sh.d+messageDefaults.fcl
[87%] Copying fcl/messageDefaults.fcl to /Users/lyon/first-try.Wrih/build_d14.x86_64/gm2artexamples/test/myLittleDatum_wr.sh.d/messageDefaults.fcl
[87%] Built target +Users+lyon+first-try.Wrih+build_d14.x86_64+gm2artexamples+test+myLittleDatum_wr.sh.d+messageDefaults.fcl
Scanning dependencies of target simple_test
[90%] Building CXX object gm2artexamples/test/CMakeFiles/simple_test.dir/simple_test.cc.o
Linking CXX executable ../bin/simple_test
[90%] Built target simple_test
Scanning dependencies of target test_MyLittleDatumAnalyzer_module
[93%] Building CXX object gm2artexamples/test/CMakeFiles/test_MyLittleDatumAnalyzer_module.dir/MyLittleDatumAnalyzer_module.cc.o
Linking CXX shared library ../lib/libtest_MyLittleDatumAnalyzer_module.dylib
[93%] Built target test_MyLittleDatumAnalyzer_module
Scanning dependencies of target test_MyLittleDatumProducer_module
[96%] Building CXX object gm2artexamples/test/CMakeFiles/test_MyLittleDatumProducer_module.dir/MyLittleDatumProducer_module.cc.o
Linking CXX shared library ../lib/libtest_MyLittleDatumProducer_module.dylib
[96%] Built target test_MyLittleDatumProducer_module
Scanning dependencies of target test_with_boost
[100%] Building CXX object gm2artexamples/test/CMakeFiles/test_with_boost.dir/test_with_boost.cc.o
Linking CXX executable ../bin/test_with_boost
[100%] Built target test_with_boost

112.06 real 69.95 user 14.34 sys

getting started with gm2artexamples 25

INFO: Stage build successful.

The long output is not shown. Hopefully there will be no compila-
tion errors. If you get some, ask for help.

3.5 Testing

gm2artexamples is currently the only product that has unit tests. To
try them, just do ctest in the $MRB_BUILDDIR directory.

$ pushd $MRB_BUILDDIR
$ ctest
$ popd

~/first-try.Wrih/build_d14.x86_64 ~/first-try.Wrih/srcs
Test project /Users/lyon/first-try.Wrih/build_d14.x86_64

Start 1: very_simple_test.sh
1/5 Test #1: very_simple_test.sh Passed 0.08 sec

Start 2: simple_test
2/5 Test #2: simple_test Passed 0.08 sec

Start 3: test_with_boost
3/5 Test #3: test_with_boost Passed 0.10 sec

Start 4: MyLittleDatum_test
4/5 Test #4: MyLittleDatum_test Passed 2.52 sec

Start 5: myLittleDatum_wr.sh
5/5 Test #5: myLittleDatum_wr.sh Passed 2.00 sec

100% tests passed, 0 tests failed out of 5

Total Test time (real) = 4.78 sec
~/first-try.Wrih/srcs

3.6 Running

There are several fcl files you can run for gm2artexamples.

$ ls $MRB_SOURCE/gm2artexamples/fcl

CMakeLists.txt
hello1.fcl
hello2.fcl
makeAndReadDatum.fcl
makeAndReadTracksFromOldHits.fcl
makeDatum.fcl
makeHits.fcl
makeHitsRotated.fcl
makeTracksFromNewHits.fcl
makeTracksFromOldHits.fcl
messageservice.fcl
minimalMessageService.fcl
readDatum.fcl
readHits.fcl
readSimpleTracks.fcl

Our art executable is called gm2. FCL files are found by the
$FHICL_FILE_PATH search path.

$ gm2 -c hello1.fcl

26 offline computing and software manual [gm2 v6_01_00]

%MSG-i MF_INIT_OK: 05-May-2015 22:46:22 CDT JobSetup
Messagelogger initialization complete.
%MSG
%MSG-w CONFIG: 05-May-2015 22:46:22 CDT JobSetup
Use of services.user parameter set is deprecated.
Define all services in services parameter set.
%MSG
Begin processing the 1st record. run: 1 subRun: 0 event: 1 at 05-May-2015 22:46:22 CDT
Hello, world. From analyze. run: 1 subRun: 0 event: 1
Begin processing the 2nd record. run: 1 subRun: 0 event: 2 at 05-May-2015 22:46:22 CDT
Hello, world. From analyze. run: 1 subRun: 0 event: 2

TrigReport ---------- Event Summary ------------
TrigReport Events total = 2 passed = 2 failed = 0

TrigReport ------ Modules in End-Path: end_path ------------
TrigReport Trig Bit# Visited Passed Failed Error Name
TrigReport 0 0 2 2 0 0 hello

TimeReport ---------- Time Summary ---[sec]----
TimeReport CPU = 0.000062 Real = 0.000092

Art has completed and will exit with status 0.

3.7 Logging in again

At some point, you will want to log out of your machine and log back
in later to continue your work. To reconstitute your development
environment, you need to,

• Select the release area

source /grid/fermiapp/gm2/setup # on gm2gpvm
source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # On Mac

• Change directory to your development area

cd ~/Development/g-2/first-time # On my Mac

• Run the setup script in local products (this will re-select the chosen
g-2 release)

source localProducts_gm2_v6_01_00_prof/setup

• Extend the environment for the products your build depends upon
(don’t forget the leading dot)

. mrb s

Now you are set to build (mrb b), run (gm2 -c FCL_FILE), and
develop.

3.8 Summary

Here is a summary of the commands for gm2 v6_01_00.

getting started with gm2artexamples 27

3.8.1 To checkout, build and run gm2artexmples to a new
development area

Log into machine (e.g. gm2gpvm.fnal.gov)

Select release area
source /grid/fermiapp/gm2/setup # On gm2gpvm
source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # On Mac

Create development area
mkdir /gm2/app/users/lyon/first-time # For me on gm2gpvm
mkdir ~/Development/g-2/first-time # For me on my Mac
cd <THAT_DIRECTORY>

Setup the release
setup gm2 v6_01_00 -q prof

Initialize Development area
mrb newDev
source localProducts_gm2_v6_01_00_prof/setup

Checkout code
cd srcs
mrb g gm2artexamples

Extend environment with build dependencies
. mrb s

Build it
mrb b

Test it
mrb t

Run it
gm2 -c hello1.fcl

3.8.2 Restoring environment when logging in again later

Here’s what you do to restore your environment

Log into machine (e.g. gm2gpvm.fnal.gov)

Select release area
source /grid/fermiapp/gm2/setup # On gm2gpvm

28 offline computing and software manual [gm2 v6_01_00]

source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # On Mac

cd to development area
cd /gm2/app/users/lyon/first-time # For me on gm2gpvm
cd ~/Development/g-2/first-time # For me on my Mac

Restore basic environment
source localProducts_gm2_v6_01_00_prof/setup

Extend environment with build dependencies
. mrb s

Now you can work!! For example
mrb b # Build it if you've made a change since last time
ctest # Test it
gm2 -c hello1.fcl # Run it

4
Developer Workflow

The steps you follow to develop code is described here. [Incomplete]

4.1 Building your code

You must compile and link your code in order to run it. These tasks
are called “building”. After you have your development environment
configured1, you must then configure further by configuring to build. 1 To configure the environment,

source the g − 2 setup script (see
section SEC GOES HERE) and
then source the setup script in local
products

Do,

. mrb s

The command above parses all of the product_deps files for your
packages and determines dependencies. It then sets then all up from
ups (e.g. geant4). You must run this command every time you start
or resume a development session (e.g. log out and back in again later).
You should not see any errors.

4.1.1 Building for the first time

When you have no build products at all in your build directory
($MRB_BUILDDIR), start the build with

mrb b

That will run cmake2 and then make3 to build your code. The build 2 See http://www.cmake.org/ for more
information.
3 make is the standard build tool that
determines dependencies, build or-
der, and issues the commands. make
uses Makefiles for configuration and
construction. These Makefiles are
extremely difficult to write correctly.
cmake is a tool with a simpler configu-
ration language that will write all of
the Makefile’s for us.

will stop if there are any cmake, compilation, or linker errors.

4.1.2 Running tests

If packages you are building contain tests, you can run them with,

pushd $MRB_BUILDDIR # cd to that directory and push to stack
ctest -j N # N is number of CPU cores
popd # Change back to old directory

30 offline computing and software manual [gm2 v6_01_00]

Where N is equal to or less than the number of cores on your ma-
chine (use 1 for gm2gpvm; a newer Mac laptop may have as many as 8
cores). The -j option is optional, but if you give it the tester can run
tests in parallel and will be much faster. Your current directory must
be $MRB_BUILDDIR.

If a test fails, look in $MRB_BUILDDIR/Testing/Temporary for log
files.

4.1.3 Re-building incrementally

When you make a change to your code, you need to build it again (an
incremental build). The build system can figure out what has changed
and only rebuild the modified code and anything that depends on it.
You can do this by re-running mrb b. Note that this will re-run cmake
perhaps unnecessarily. See below for faster ways to rebuild.

4.2 Incremental rebuilds

If you have not changed any CMakeLists.txt files and you have
not added any new header files, you can skip the cmake step on an
incremental re-build by doing,

pushd $MRB_BUILDDIR # cd to that directory and push to stack
make -j N # N is number of CPU cores
popd # Change back to old directory

This may still take a minute or two as make has to check each
directory for changes (see below for faster methods). Use -j to specify
the number of cores on your machine to do builds in parallel. On
gm2gpvm, leave off the -j since there is only one core.

4.2.1 Incremental rebuild (super-fast but potentially dangerous)

When make runs, it tells you the target that is building. If you know
the name of the target for your build, you can tell make to only make
that target. For example,

pushd $MRB_BUILDDIR # cd to that directory and push to stack
make gm2artexamples_Lesson2_makeRotatedHits_module
popd # Change back to old directory

This technique is somewhat dangerous, as make will not build other
targets that depend on the one you have changed, possibly leading to
an inconsistent and incorrect build. But, if you are changing an art
module which cannot have downstream dependencies, then you are
safe in only building that module’s target.

This partial build is very fast, as you are telling make to only build
a very small part of the codebase.

developer workflow 31

4.2.2 Building with ninja (amazingly fast and apparently safe)

ninja 4 is a build system that replaces make. Fortunately, just as 4 See http://martine.github.io/ninja/
cmake knows how to create the files necessary for make, cmake also
knows how to create the files for building with ninja. ninja works on
all platforms.

The advantage of ninja over make is that if you do an incremental
build, ninja can determine what files need compiling in practically
zero time.

For example, if you do a full build, and then do an incremental
build (with mrb b) changing nothing, the build will take quite awhile
to figure out that there is nothing to do. That is because make needs
to check each directory for updated files. Somehow, ninja figures this
out a different way.5 5 I think ninja polls the file system

event logger to determine what files
were updated and it will return
instantaneously.

Compiling and linking takes time, of course, but you will get there
much faster.

Though I have done builds with make and ninja and see no prob-
lems with using ninja, currently ninja is experimental and you will
have to follow some extra steps to use it.

First build with ninja
ninja replaces make. You can decide to use ninja for your build

directory. If you’ve already done a build with make, you must zap it
(delete it with mrb z; . mrb s) and then redo the full build with
ninja. Once you’ve built with ninja, you must zap again to go back
to make for that build directory. The upshot is that you cannot freely
switch between make and ninja for a build directory.

Because ninja is experimental, you must set it up explicitly. Before
running the build, do (you will need to do this each time you log in),

setup ninja v1_5_3a

Now, you need to do a full build with,

. mrb s
mrb b --generator ninja

You won’t see much speed up here, as this is a full build. The speed
up occurs for incremental builds.

Incremental builds with ninja
You must have done a full build with ninja as described in the

previous section. If you have logged out and logged back in in the
meantime, re-run the setup ninja command above.

Now when you change some code and want to do an incremental
build, do

32 offline computing and software manual [gm2 v6_01_00]

pushd $MRB_BUILDDIR # cd to that directory and push to stack
ninja # The magic happens
popd # Change back to old directory

ninja will figure out the number of cores you have. ninja will
determine all of the files that need to be re-compiled and linked with
almost no overhead.

5
Using a Mac for Development

Information and instructions for developing and running g− 2 code on
the Mac has moved to its own document. See GM2-doc-2459.

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=2459

6
Getting Started with the Simulation

This section gives information and instructions on how to get started
with the Muon g-2 simulation. If you are brand new to the simulation,
then you have several things you need to learn,

• Geant4
• ArtG4
• Gm2RingSim and its associated packages

Let’s go through these things one at a time.

6.1 Geant4

Geant4 is a toolkit for the simulation of particles passing through
matter and fields. You can create all manner of apparatuses, shoot
particles at it, and see what the particles will do. Geant4 has exten-
sive physics models that can handle a wide variety of situations. We
use Geant4 to build our Muon g-2 ring with its detectors and then
shoot muons into it. Geant4 figures out how those muons will behave.
It can do decays, spin tracking, interactions with the calorimeter crys-
tals and optical photons, etc. It is quite an extensive package. The
home page for Geant4 is at http://geant4.cern.ch/ . There are three
main parts of Geant4,

Building the apparatus and detectors You must define the shapes and
materials that the particles will be passing through. Geant4 has an
extensive library of materials and shapes to choose from. You must
also create “sensitive detectors”, which are parts of the apparatus
where geant will record interactions and energy loss as hits.

Defining “actions” Geant processes the simulation in many steps,
including starting and ending events, tracking new particles, and
stepping through parts of the simulation. You can add your code in
these processes via actions.

http://geant4.cern.ch/

36 offline computing and software manual [gm2 v6_01_00]

Examining hits The ultimate goal of the simulation is to record inter-
actions of particles with the sensitive detectors in the apparatus.
Such information is the “truth”. You must then have code outside
of geant that determines the response of the detectors to these hits
(usually called the digitization step).

On the Geant home page are various user guides. The best one
to look at for a newcomer is the Users’s Guide for Application De-
velopers. Part of learning geant is going through the extensive set of
examples. Fortunately, we have all of the examples distributed in our
g-2 release.

6.1.1 Building and running the Geant4 examples

See section 3.1 and follow those instructions to set up your environ-
ment. Note that Geant4 has its own build system for the examples, so
we will not be using the usual g-2 development area. First, we need to
chose a release area.

$ if [-r /grid/fermiapp/gm2/setup]; then # Does /grid/fermiapp/gm2/setup exist?
$ source /grid/fermiapp/gm2/setup # We're on gm2gpvm
$ else
$ source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # We're on a Mac
$ fi

g-2 software

--> To list gm2 releases, type
ups list -aK+ gm2

--> To use the latest release, do
setup gm2 v6_00_00 -q prof

For more information, see https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/ReleaseInformation

We will only set up geant4 along with the cmake build system,
which is all we need to run the examples (below are the latest versions
of geant and cmake we have in the release),

$ setup geant4 v4_9_6_p04a -q prof
$ setup cmake v3_2_1

ERROR: Version conflict -- dependency tree requires versions conflicting with current setup of product geant4: qualifiers prof vs e7:prof

Let’s make a directory to do some work in.

$ if [-r /gm2/app/users/$USER]; then # Does /gm2/app/users/YOU exist?
$ # It does, let's use /gm2/app/users/$USER/first-try followed by random letters for uniqueness
$ TMPDIR=`mktemp -d /gm2/app/users/$USER/geant-ex.XXXX`
$ else
$ # We're not on gm2gpvm, let's just make a directory in your home area (hope there's room!)

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/
http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/

getting started with the simulation 37

$ TMPDIR=`mktemp -d ~/geant-ex.XXXX`
$ fi
$
$ # Change directory there
$ cd $TMPDIR

You can find the geant examples at, $GEANT4_DIR/source/geant4.9.6.p04/examples,

$ ls $GEANT4_DIR/source/geant4.9.6.p04/examples

CMakeLists.txt
GNUmakefile
History
README
README.HowToRun
advanced
basic
extended
novice

The README file describes the different examples. The build instruc-
tions here are based on the README.HowToRun file. See that file for
more information.

Let’s try to build and run the N05 example in the novice directory.
First, we need to make a build area,

$ mkdir n05-build
$ cd n05-build

Now we run cmake1 with some parameters to set up the build 1 On the Mac, you may see a mes-
sage about using the AppleClang
C compiler. That is not a problem
because Geant is all C++ and so the
C compiler will not be used.

system.

$ export CMAKE_PREFIX_PATH=$GEANT4_FQ_DIR
$
$ cmake -DCMAKE_BUILD_TYPE=Debug \
$ -DCMAKE_CXX_COMPILER=$GCC_FQ_DIR/bin/g++ \
$ -DCMAKE_CXX_FLAGS="-std=c++1y" \
$ $GEANT4_DIR/source/geant4.9.6.p04/examples/novice/N05

-- The C compiler identification is AppleClang 6.1.0.6020049
-- The CXX compiler identification is GNU 4.9.2
-- Check for working C compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/cc
-- Check for working C compiler: /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Checking whether CXX compiler has -isysroot
-- Checking whether CXX compiler has -isysroot - yes
-- Checking whether CXX compiler supports OSX deployment target flag
-- Checking whether CXX compiler supports OSX deployment target flag - yes
-- Check for working CXX compiler: /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/gcc/v4_9_2/Darwin64bit+14/bin/g++
-- Check for working CXX compiler: /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/gcc/v4_9_2/Darwin64bit+14/bin/g++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /Users/lyon/geant-ex.FO5T/n05-build

38 offline computing and software manual [gm2 v6_01_00]

And now we run make,

$ make

Scanning dependencies of target exampleN05
[6%] Building CXX object CMakeFiles/exampleN05.dir/exampleN05.cc.o
[12%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05CalorimeterHit.cc.o
[18%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05CalorimeterSD.cc.o
[25%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05DetectorConstruction.cc.o
[31%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05EMShowerModel.cc.o
[37%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05EnergySpot.cc.o
[43%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05EventAction.cc.o
[50%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05EventActionMessenger.cc.o
[56%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05ParallelWorldForPion.cc.o
[62%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05PhysicsList.cc.o
[68%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05PiModel.cc.o
[75%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05PionShowerModel.cc.o
[81%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05PrimaryGeneratorAction.cc.o
[87%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05RunAction.cc.o
[93%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05SteppingAction.cc.o
[100%] Building CXX object CMakeFiles/exampleN05.dir/src/ExN05SteppingActionMessenger.cc.o
Linking CXX executable exampleN05
[100%] Built target exampleN05

There will now be an executable example05 in the build directory.
All of the necessary files you need to run (.in, .mac, .gdml) will also
be copied to the build directory. Files with .in are input macro files.
You can run them with (for this example),

$./example05 example05.in > out # There is lots of output, so redirect
$ less out # Examine the output

You can also run in interactive mode. This mode will allow you to
see the visualizations. For example,

$./example05

You will now be at the Idle> prompt
First, let's run "vis.mac" to set up visualization
Idle> control/execute vis.mac

Now run some commands. Best to have another window so you can
look at example05.in for hints
Idle> /gun/particle e-
Idle> /gun/energy 1 GeV
Idle> /gun/position 0 0 0
Idle> /gun/direction 0 .6 1.
Idle> /run/beamOn 1

You will see one particle shot into the apparatus
You can end with exit
Idle> exit

Be sure to look at the code and understand what it is doing.

getting started with the simulation 39

If you want to try a different example, use its directory on the last
line of the call to camke above.

If you want to alter the example code, then you will have to copy
the source code directory to your own directory. Build it the same
way as above, but with the last line of the cmake call pointing to your
source directory.

7
Running the simulation

This section gives you very brief instructions on how to build and
run the gm2ringsim simulation. More details will be coming in future
versions of this document.

Be sure you are familiar with the basics in section 3.

7.1 Component packages in the simulation

Our simulation code is made up of four packages:

• artg4 - serves as the interface between the art framework and
geant4.

• gm2geom - a prototype geometry server
• gm2dataproducts - data products used for emitted by the simula-

tion
• gm2ringsim - the simulation code itself

7.2 Using a base release

See section 2.6 for the meaning of point and base releases. The base
release (e.g v5_00_00) only has libraries and executables for the exter-
nal programs. Therefore to run the simulation from a base release, you
must build all of the component packages yourself.

7.3 Using a point release

See section 2.6 for the meaning of point and base releases. With a
point release, you may use some or all of the component packages out
of the release instead of building them yourself. You should check the
CHANGELOG (e.g. less $GM2RINGSIM_DIR/CHANGELOG) to make sure
that the packages were built with the features you want. If so, then
simply run a FCL file with gm2; no need to build anything or even set
up a development area.

42 offline computing and software manual [gm2 v6_01_00]

If you need to build a package because you want to run something
even newer than what was released or you have changes, then follow
the dependency tree. In section 7.1, we see the list of components.
This was purposefully written to show dependencies from bottom
up. E.g. gm2ringsim is at the bottom. If you only need to change
gm2ringsim then you only need to checkout out and build your ver-
sion of gm2ringsim. gm2ringsim depends on gm2dataproducts, so if
you change something in gm2dataproducts you will need to checkout
and build gm2dataproducts and gm2ringsim. So the way to read
that list of components in section 7.1 is that if you change and build
a package, you must also change and build everything below it on the
list.

7.4 FCL files for the simulation

There are many fcl files that you can use to run the simulation.
Here’s a list of some of them,

BeamDiagnosticMuPlus.fcl Shoot individual muons that go around
the ring with a rudimentary particle gun with the fiber harp de-
ployed.

BeamDiagnosticMuPlusMuonGasGun.fcl Simulation with fiber harp
deployed using the gas gun. The gas gun makes muons randomly
appear in the ring right before decay.Since geant does not track
muons around the ring, this is a very fast simulation.

ProductionMuPlus.fcl Shoot individual muons that go around the
ring with the ring in data taking state (e.g. no fiber harp).

ProductionMuPlusMuonGasGun.fcl Same as above, but using the
muon gas gun. Very fast simulation.

beamtransport_gun.fcl Muons are not tracked around the ring.
Instead, the position and momentum of the muon is calculated
using the beam equations of motion and the muon appears in the
ring just before it decays. A very accurate and fast simulation.

inflector_gun.fcl A very slow but accurate simulation of muons
going through the inflector and around the ring.

8
Writing Source Code

Warning: This section needs to be reviewed and cleaned up.
Your source code lives within a git project checked out to your

development area’s srcs directory. The project has a top level direc-
tory1 that contains the “top level” CMakeLists.txt file along with 1 For example, the gm2ringsim

project would get checked out to
srcs/gm2ringsim, which is the “top
level” directory.

various subdirectories. Code with a common purpose should live in
a particular subdirectory.2 You may mix headers (.h, .hh), imple-

2 Examine gm2ringsim for more
examples.

mentation (.cc, .cpp), and configuration (.fcl) files all in the same
subdirectory.

8.1 Top level CMakeLists.txt file

The top level CMakeLists.txt file lives in your top level project
directory (e.g. srcs/gm2ringsim/CMakeLists.txt). It has the main
directives that tells CMake how to build your project.

Below is a representative top level CMakeLists.txt file.3 The 3 There are five main parts of the file
(roughly in order in the file)...
• Defining the project
• Loading CMake macros and

setting the CMake environment
• Setting compiler options
• Specifying external packages that

will be used
• Specifying subdirectories that

contain a CMakeLists.txt file and,
perhaps, code to build

mrb newProduct command will create a skeleton file for you.
1 # Ensure we are using a moden version of CMake
2 CMAKE_MINIMUM_REQUIRED (VERSION 2.8)

4 # Project name - use all lowercase
5 PROJECT (gm2analyses)

7 # Define Module search path
8 set(CETBUILDTOOLS_VERSION $ENV{CETBUILDTOOLS_VERSION})
9 if(NOT CETBUILDTOOLS_VERSION)

10 message(FATAL_ERROR
11 "ERROR:␣setup␣cetbuildtools␣to␣get␣the␣cmake␣modules")
12 endif ()
13 set(CMAKE_MODULE_PATH $ENV{CETBUILDTOOLS_DIR }/ Modules
14 ${CMAKE_MODULE_PATH})

16 # art contains cmake modules that we use
17 set(ART_VERSION $ENV{ART_VERSION})
18 if(NOT ART_VERSION)
19 message(FATAL_ERROR

44 offline computing and software manual [gm2 v6_01_00]

20 "ERROR:␣setup␣art␣to␣get␣the␣cmake␣modules")
21 endif ()
22 set(CMAKE_MODULE_PATH $ENV{ART_DIR }/ Modules
23 ${CMAKE_MODULE_PATH})

25 # Import the necessary macros
26 include(CetCMakeEnv)
27 include(BuildPlugins)
28 include(ArtMake)
29 include(FindUpsGeant4)

31 # Configure the cmake environment
32 cet_cmake_env ()

34 # Set compiler flags
35 cet_set_compiler_flags(DIAGS VIGILANT WERROR
36 EXTRA_FLAGS -pedantic
37 EXTRA_CXX_FLAGS -std=c++11
38)

40 cet_report_compiler_flags ()

42 # Set include and library search paths (the version numbers
43 # are minimum - if actual version of product is below specified ,
44 # will get error)

46 # Everyone should include these
47 find_ups_product(cetbuildtools v3_07_08)
48 find_ups_product(art v1_08_10)
49 find_ups_product(fhiclcpp v2_17_12)
50 find_ups_product(messagefacility v1_10_26)

52 # This project uses code from gm2ringsim ,
53 # gm2dataproducts , and gm2geom
54 find_ups_product(gm2ringsim v1_00_00)
55 find_ups_product(gm2dataproducts v1_00_00)
56 find_ups_product(gm2geom v1_00_00)

58 # This project uses code from Root
59 find_ups_root(v5_34_12)

61 # Make sure we have gcc
62 cet_check_gcc ()

64 # Macros for art_make and simple plugins (must go after
65 # find_ups lines)
66 include(ArtDictionary)

68 # Specify subdirectories to build
69 add_subdirectory(ups) # Every project needs a ups subdirectory
70 add_subdirectory(DisplayDataProducts)

writing source code 45

71 add_subdirectory(calo)
72 add_subdirectory(fcl)
73 add_subdirectory(test)
74 add_subdirectory(util)

76 # Packaging facility - required for deployment
77 include(UseCPack)

8.1.1 When you need to add/change a line in top level CMakeLists.txt

There are two situations for which you will have to alter the top level
CMakeLists.txt file:

If you add, delete, or rename a subdirectory If you add a subdirec-
tory, you must write a corresponding add_subdirectory(dirName)
directive.4 If you delete a directory, you must remove its correspond- 4 The add_subdirectory directory

tells CMake to go into that subdi-
rectory and build code there. If you
don’t have the add_subdirectory then
CMake won’t look in the subdirectory
at all.

ing add_subdirectory line. If you rename a directory, you must edit
its corresponding add_subdirectory line to reflect the change. If you
do not follow these steps, then some code may not build (without an
error, so this mistake will be hard to find) or you may get an error
when CMake tries to build a directory that no longer exists.

You use code from an external project If you use code from an exter-
nal project, you may need to add a corresponding find_ups_product
or similar line.5 5 See section 8.8 for instructions.

8.2 Organizing Source Code

The build system we use is quite flexible and you can organize your
code in many ways. You may be used to having all of your header
files in an include directory with the .cc files in other directories.
This artificial separation is unnecessary. You may group files together
any way you like and may have header files and implementation files
in the same directory. Typically, it is best to group files by topic or
functionality.

8.3 Writing Modules

Modules are plugins to art that perform certain functions (analyzers,
producers, filters, and output modules). See section 10 of the Art
Work Book6 for more information. Only reminders will be given here. 6

You should use artmod to write the skeleton of the module. Do
artmod --help-types to see the list of module types it will make.
Then just run it, giving the name of the class you want including any
namespace specification. For example,

46 offline computing and software manual [gm2 v6_01_00]

1 artmod producer tracking:TrackFinder
2 artmod analyzer gm2analysis :: CalorimeterDiags

Remember that you specify the class name, not the file name (so do
not give _module in the name).

8.4 Writing Services

TODO

8.5 Writing Input Source Modules

TODO

8.6 Directory level CMakeLists.txt file

If your subdirectory (e.g. srcs/gm2analyses/strawTracker) has
anything to build, has header files, or has further subdirectories,
then it must have a CMakeLists.txt file (and a corresponding
add_subdirectory line in the CMakeLists.txt from the directory
above - see Sec. 8.1.1).7 If your subdirectory has code to build, then 7 The directory level CMakeLists.txt

file is different from the top level
CMakeLists.txt file. The latter is in
your project top level directory, like
srcs/gm2analyses. The former is in a
subdirectory of that top level and is
described in this section.

the directory CMakeLists.txt file needs to have

1 art_make()

A directory with no .cc or .cpp files has no code to build and so
does not get an art_make line in the directory CMakeLists.txt file.

See the next section (Sec. 8.6.1) for arguments to the art_make.
You should call art_make only once per CMakeLists.txt file.

If your subdirectory has header files, then those have to be copied
to the release area when one runs mrb install. To do that, you need
a line the directory CMakeLists.txt file with

1 install_headers() # No arguments

If your subdirectory has fcl files, then those need to be copied to
the build area as well as the release area. There is some scripting in-
volved to do that (put the following in the directory CMakeLists.txt
file),

1 # install all *.fcl files in this directory to the release area
2 file(GLOB fcl_files *.fcl)
3 install(FILES ${fcl_files}
4 DESTINATION ${product }/${version }/fcl)

6 # Also install to the build area
7 foreach(aFile ${fcl_files })
8 get_filename_component(basename ${aFile} NAME)
9 configure_file(

writing source code 47

10 ${aFile} ${CMAKE_BINARY_DIR }/${product }/fcl/${basename}
11 COPYONLY)
12 endforeach(aFile)

If your subdirectory has futher subdirectories with code to build,
then you need an add_subdirectory(dirName) line for each subdi-
rectory.

8.6.1 Arguments to art_make

You can find documentation for art_make in its source code at
$ART_DIR/Modules/ArtMake.cmake. Basically, you need to specify

what libraries to link against when you use external code.8 If you 8 See Sec. 8.8 for how to tell if you are
using external code.don’t use any external code, then you will have no arguments to

art_make. It will tell CMake to build all regular source, modules,
services, and input sources in the directory. If you do use external
code, then you have four choices,

• If the source file using external code is a regular source (not a
module, not a service, not an import source), then you need

1 art_make(
2 LIB_LIBRARIES
3 library1
4 library2 # if needed
5)

• If the source file using the external code is a module source
(e.g. analyze_my_hits_module.cpp) then you need

1 art_make(
2 MODULE_LIBRARIES
3 library1
4 library2 # if needed
5)

• If the source file using the external code is a service source
(e.g. analyze_my_hits_service.cpp) then you need

1 art_make(
2 SERVICE_LIBRARIES
3 library1
4 library2 # if needed
5)

• If the source file using the external code is source code for an input
source
(e.g. midas_source.cpp) then you need

48 offline computing and software manual [gm2 v6_01_00]

1 art_make(
2 SOURCE_LIBRARIES
3 library1
4 library2 # if needed
5)

If you have a mixture of sources in your directory, you can string
the calls together. For example,9

9 In the example to the left, regular
sources get linked against Root’s
libGpad.so (see Sec. 8.8.2) and
modules get linked against code built
in the srcs/gm2analyses/util and
srcs/gm2analyses/strawtracker/util
directories (see Secs. 8.8.4 and 8.8.5).

1 art_make (
2 LIB_LIBRARIES
3 ${ROOT_GPAD}
4 MODULE_LIBRARIES
5 gm2analyses_util
6 gm2analyses_strawtracker_util
7)

Note that it does not hurt for code to build against a library that it
doesn’t need. So if you have five modules and only one needs to link
against a library, put that library in the MODULE_LIBRARIES section.
The one that needs it will link against it and the four that don’t won’t
care.

8.7 Libraries produced from building

Every directory in your project that has code to build generates at
least one library.10 Say, for example, you have a directory called

10 An important note, if your di-
rectory only has header files in it
(should be a rare situation for code
written by users), then no library
will be produced (because there is
no code to build - the header files
are all included by other source
code). You still need the directory
level CMakeLists.txt file for the
install_headers() directive, but do
not do art_make. See Sec. 8.6.

gm2analyses/calo. Regular sources (not modules, services, nor in-
put sources) get compiled and the objects go into a library called
libgm2analyses_calo.so (the name is the directory path with
slashes replaced by underscores). Each module in the directory gets
its own library. For example, if there is a module in that directory
called Analyze_Calo_module.cc then that code will go into a library
called libgm2analyses_calo_Analyze_Calo_module.so. A similar
thing happens for services and input sources. Therefore, one directory
of code may produce several libraries. The art_make directive in the
directory CMakeLists.txt file tells the build system to build code and
make the corresponding libraries.

8.8 Using External Code (Linking)

Your code is almost never self-contained, especially when writing
within the Art framework. You may use functions and classes from
external libraries, like Root and Geant4. You may use algorithms,
data products, and other functionalities from other projects, like

writing source code 49

gm2ringsim. You may use objects defined in other directories in your
project. If you are writing an art module or service, you may use
objects defined in the same directory, but in a different file from the
module or service. All of these examples are “external code”.

Art uses dynamic linking, which means that the art executable
(ours is called gm2) has very little code in it. Instead, it loads all of
the libraries it needs at runtime. The other style is static linking
where the executable has embedded in it all of the libraries it needs.
Dynamic linking, as the name suggests, allows for flexibility with one
executable able to load a variety of different libraries decided upon
at runtime with the configuration file. There is, however, overhead
in dynamic loading typically experienced as slow start-up time of
the program. Static linking produces an executable with all of the
libraries built in - so there is little flexibility in terms of functionality.
But the start up time is much faster. Static linking typically leads to
many copies of executables for the different functionalities, resulting in
duplication of libraries that are in common. For maximum flexibility
and non-duplication of libraries, art loads everything dynamically.

How do you know when you are using external code?
An easy indicator is when you have a #include for a header file. For
each #include, you need to think and perhaps add a corresponding
link directive in a CMakeLists.txt file.11 If you forget to link to a

11 Remember the two types of
CMakeLists.txt files: “top level”
and “directory level”. The former
(see Sec. 8.1) is the potentially big
file at the top level of your project.
The latter (see Sec. 8.6) is the smaller
file in the directory with your actual
source code files.

library that you need, you will get a missing symbol error when you
try to run. This section will explain how to figure out these situations
and actions you need to take.

8.8.1 Includes for system headers and base art headers

System headers, like #include <string> do not require any special
directives for linking. You get them for free.

Headers in art, fhiclcpp, and messagefacility do not require
anything in your directory level CMakeLists.txt file. The correspond-
ing libraries are automatically loaded by the art executable. Your top
level CMakeLists.txt file must contain the following lines,12

12 These lines add header file direc-
tories to the compiler include search
path (e.g. without them, you will get
a compilation error that header files
cannot be found).

1 ...
2 cet_report_compiler_flags ()
3 ...
4 find_ups_product(art v1_08_10)
5 find_ups_product(fhiclcpp v2_17_12)
6 find_ups_product(messagefacility v1_10_26)
7 ...

50 offline computing and software manual [gm2 v6_01_00]

8.8.2 Includes for Root headers

Including a header from Root is a little unusual because you do not
have to give a path in the include, e.g. #include "TCanvas.h" (not
#include "root/TCanvas.h"). If you include a header from Root,
you will also need to link to the corresponding Root library. First, in
the top level CMakeLists.txt file, you must have,13

13 That find_ups_root line adds the
Root headers to the compiler include
search path and creates CMake
variables corresponding to each Root
library.

1 ...
2 cet_report_compiler_flags ()
3 ...
4 find_ups_root(v5_34_12)
5 ...

If you look at the code for the find_ups_root CMake macro at
$CETBUILDTOOLS/Modules/FindUpsRoot.cmake you will see lines

like,14

14 These lines define the CMake
variables that correspond to Root
libraries. You use them in the direc-
tory level CMakeLists.txt file to tell
CMake to link against that library.

1 find_library(ROOT_GLEW NAMES GLEW PATHS ${ROOTSYS }/lib
2 NO_DEFAULT_PATH)
3 find_library(ROOT_GPAD NAMES Gpad PATHS ${ROOTSYS }/lib
4 NO_DEFAULT_PATH)
5 find_library(ROOT_GRAF NAMES Graf PATHS ${ROOTSYS }/lib
6 NO_DEFAULT_PATH)
7 find_library(ROOT_GRAF3D NAMES Graf3d PATHS ${ROOTSYS }/lib
8 NO_DEFAULT_PATH)

To determine the Root library you need, look up the Root object
in the Root documentation at http://root.cern.ch/drupal/content/
reference-guide (select the appropriate version of Root - usually the
PRO version). Find the class name from the list and click on it. On
the new page, on the very right hand side in a little greyed out box it
will say the library that corresponds to that Root object. For example,
if you #include "TCanvas.h" you need to link against the libGpad
library. The CMake variable name will in general be the name of the
library, all upper case, with the lib replaced by ROOT_. So libGpad →
${ROOT_GPAD}.

In your directory level CMakeLists.txt file, you will have the
art_make directive. Add the appropriate CMake variable correspond-
ing to the Root library you need. See Sec. 8.6.1 for where to put such
items in the arguments. For example,15

15 In the example left, regular sources
are linked against libGpad.so
while modules are linked against
libTree.so and libTVMA.so.

1 art_make (
2 LIB_LIBRARIES
3 ${ROOT_GPAD}
4 MODULE_LIBRARIES
5 ${ROOT_TREE}
6 ${ROOT_TVMA}

http://root.cern.ch/drupal/content/reference-guide
http://root.cern.ch/drupal/content/reference-guide

writing source code 51

7)

8.8.3 Includes for GEANT headers

To include a header file from Geant4, requires you to have Geant4/
in the header path, for example #include "Geant4/G4Track.hh". If
you include such headers in your code, then you will also need to link
against the Geant4 libraries. First, in your top level CMakeLists.txt
file, you must have,

1 ...
2 cet_report_compiler_flags ()
3 ...
4 find_ups_geant4(v4_9_6_p02)
5 ...

That line adds the Geant4 headers to the compiler include
search path and creates the CMake variables ${G4_LIB_LIST}
and ${XERCESLIB}. For any Geant4 header, just add those CMake
variables to the art_make directive in your directory CMakeLists.txt
file. See Sec. 8.6.1 for where to put such items in the arguments. For
example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,16

16 If you are curious, you can see
where G4_LIB_LIST is defined in
$CETBUILDTOOLS_DIR/Modules/FindUpsGeant4.cmake.
XERCESLIB goes with Geant.

1 art_make(
2 LIB_LIBRARIES
3 gm2geom_calo
4 gm2geom_station
5 artg4_material
6 artg4_util
7 ${XERCESCLIB}
8 ${G4_LIB_LIST}
9 SERVICE_LIBRARIES

10 gm2ringsim_calo
11)

8.8.4 Includes for headers in the project

The #include directive should include the path to the header file,
including the name of the project even if the header is in the same
directory as the source, though you could just give the header file
name. For example, if CaloHitSD.hh is in the gm2ringsim/calo
directory, then CaloHitSD.cc, when it includes CaloHitSD.hh, can do
either

1 #include "CaloHitSD.hh"

52 offline computing and software manual [gm2 v6_01_00]

or

1 #include "gm2ringsim/calo/CaloHitSD.hh"

The latter is preferred as it is clearer, but if you change the name of
the directory, you must change the include as well.

If you have a regular source file and it includes a header that is
present in the same directory, then you do not need to do anything
to the CMakeLists.txt files. If you have a module, service, or input
source file and it includes a header that is present in the same direc-
tory, then you need to link against the library for that directory. You
do not need to add anything to the top level CMakeLists.txt file.
To the directory CMakeLists.txt file, you must add the library. See
Sec. 8.6.1 for where to put such items in the arguments. For example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,17

17 In the left example, services in
that directory are linked against
the library that gets created
from the regular sources, namely
libgm2ringsim_calo.so. You can
predict the name of the library by
taking the source directory (e.g.
gm2ringsim/calo) and replacing the
slashes by underscores.

1 art_make(
2 LIB_LIBRARIES
3 gm2geom_calo
4 gm2geom_station
5 gm2ringsim_station
6 artg4_material
7 artg4_util
8 ${XERCESCLIB}
9 ${G4_LIB_LIST}

10 SERVICE_LIBRARIES
11 gm2ringsim_calo
12)

If any source file uses a header that is present in a different direc-
tory in your project, then you must link against that library. In the
example above, code in the gm2ringsim/calo directory includes code
from gm2ringsim/station, and hence gm2ringsim_station is present
in the arguments of art_make.

An important exception to these instructions is if the directory with
the header file contains only header files. In that case, that directory
produces no libraries and you do not have to change the directory
CMakeLists.txt file.

8.8.5 Includes for headers in other projects

If you have a source file (regular, module, service, or input source)
that uses code from another project, then you need to do some work.
An example here is code in gm2ringsim uses code from the gm2geom
and artg4 projects. The #include needs the path to the header
file including project name, directory name and header name. For
example, #include "artg4/util/util.hh".

writing source code 53

In your top level CMakeLists.txt file, you need a find_ups_product
line for the project specifying the project name and a minimum
version number. See Sec.8.1 for an example.

In your directory CMakeLists.txt file, you need to list the library
corresponding to the code you are using. See Sec. 8.6.1 for where to
put such items in the art_make arguments. For example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,

1 art_make(
2 LIB_LIBRARIES
3 gm2geom_calo
4 gm2geom_station
5 artg4_material
6 artg4_util
7 ${XERCESCLIB}
8 ${G4_LIB_LIST}
9 SERVICE_LIBRARIES

10 gm2ringsim_calo
11)

When the regular sources are built, they will be linked against
code in gm2geom/calo, gm2geom/station, artg4/material, and
artg4/util.

An important exception to these instructions is if the directory
with the header file contains only header files. In that case, that
directory produces no libraries and you do not have to change the
directory CMakeLists.txt file. You still need to have the top level
CMakeLists.txt file correct as described above.

9
Things You May Do in Your Code

This chapter contains some reminders of common things you do in
Muon g− 2 code.

9.1 Dealing with parameters

The constructor for your module or service has the parameter set as
an argument. You can retrieve information from the parameter set
and supply defaults if the parameter does not exist as in the example
below.

1 gm2ex :: CalorimeterDigitizer :: CalorimeterDigitizer(
2 fhicl :: ParameterSet const & p) :
3 category_ (p.get <std::string >("category","digi")),
4 TAURAMP_ (p.get <float >("TAURAMP", 1.4 /* ns */)),
5 TAUDECAY_ (p.get <float >("TAUDECAY", 36.4 /* ns */)),
6 PULSELENGTH_ (p.get <int >("PULSELENGTH", 30 /* samples */)),
7 // ...

9.2 Readling enviornment variables

1 #include <cstdlib >
2 // ...
3 std:: string value = std:: getenv("PATH '');

The argument to std::getenv is a constant character array, not a
std::string.
9.3 Throwing an exception

See http://mu2e.fnal.gov/public/hep/computing/exceptions.shtml.

1 #include "cetlib/exception.h"
2 // ...
3 if (something) {

http://mu2e.fnal.gov/public/hep/computing/exceptions.shtml

56 offline computing and software manual [gm2 v6_01_00]

4 throw cet:: exception(CATEGORY) << "Message\n"
5 }

9.4 Finding a file

cetlib has a nice facility for searching for files in a path specification.
See $CETLIB_INC/cetlib/search_path.h.

It may be convenient to specify the search path in a FHICL param-
eter with the possibility of providing an environment variable. Here
is some code that takes a search path through the parameter, but if
the first character is a $, it then gets the path through the specified
environment variable.

1 gm2util :: MetadataFromFile :: MetadataFromFile(
2 fhicl :: ParameterSet const & p) :
3 searchPath_ (p.get <std::string >("searchPath", ".")),
4 fileName_ (p.get <std::string >("fileName")),
5 keyName_ (p.get <std::string >("keyName"))
6 {
7 // Let 's parse the search path
8 // If the first character is a dollar sign , then the
9 // remaining is an environment variable

10 if (searchPath_.at(0) == "$") {
11 std:: string envVar = searchPath_.substr (1);
12 char* envValue = std:: getenv(envVar.c_str ());
13 if (! envValue) {
14 searchPath_ = ".";
15 throw cet:: exception("META_DATA_FROM_FILE") <<
16 "Environment␣variable␣" << envVar << "␣is␣not␣set";
17 }

19 searchPath_ = std:: string(envValue);
20 }
21 }

10
Frequently Asked Questions

Some questions are answered here that didn’t seem to fit in other
sections.

Where is the art source code? The art source code1 for a par- 1 Never use the source code directory
for an #include in your code. Instead,
just use #include "art/whatever.h"
and the build system will find it in
$ART_INC.

ticular gm2 release is accessible in our release area for you
to peruse. Set up the the release (see section 3) and look in
$ART_DIR/source/art.

frequently asked questions 59

Index

add_subdirectory, 45
art_make, 46
arguments, 47

artmod, 45

CMakeLists.txt
directory level, 46
top level, 43

exceptions, 55
external code, 48

find_ups_geant4, 51
find_ups_product, 49
find_ups_root, 50

input source
writing, 46

install_headers, 46

linking, 48

modules
writing, 45

services
writing, 46

	What is this document?
	What code goes with this document?
	Obtaining this documentation
	Obtaining the source for this documentation, contributing to it, and building it

	Releases of gm2
	gm2 v6_01_00 -q prof and (-q debug)
	gm2 v6_00_00 -q prof and (-q debug)
	gm2 v5_01_00 -q e6:prof
	gm2 v5_00_00 -q e6:prof and (-q e6:debug)
	gm2 v201402 -q e4:prof
	The Release Philosophy

	Getting started with gm2artexamples
	Logging in and selecting a release area
	Starting a development area
	Checkout code
	Building code
	Testing
	Running
	Logging in again
	Summary

	Developer Workflow
	Building your code
	Incremental rebuilds

	Using a Mac for Development
	Getting Started with the Simulation
	Geant4

	Running the simulation
	Component packages in the simulation
	Using a base release
	Using a point release
	FCL files for the simulation

	Writing Source Code
	Top level CMakeLists.txt file
	Organizing Source Code
	Writing Modules
	Writing Services
	Writing Input Source Modules
	Directory level CMakeLists.txt file
	Libraries produced from building
	Using External Code (Linking)

	Things You May Do in Your Code
	Dealing with parameters
	Readling enviornment variables
	Throwing an exception
	Finding a file

	Frequently Asked Questions
	Index

